CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Linear eddy viscosity models

Linear eddy viscosity models

From CFD-Wiki

Jump to: navigation, search
Turbulence modeling
Turbulence
RANS-based turbulence models
  1. Linear eddy viscosity models
    1. Algebraic models
      1. Cebeci-Smith model
      2. Baldwin-Lomax model
      3. Johnson-King model
      4. A roughness-dependent model
    2. One equation models
      1. Prandtl's one-equation model
      2. Baldwin-Barth model
      3. Spalart-Allmaras model
    3. Two equation models
      1. k-epsilon models
        1. Standard k-epsilon model
        2. Realisable k-epsilon model
        3. RNG k-epsilon model
        4. Near-wall treatment
      2. k-omega models
        1. Wilcox's k-omega model
        2. Wilcox's modified k-omega model
        3. SST k-omega model
        4. Near-wall treatment
      3. Realisability issues
        1. Kato-Launder modification
        2. Durbin's realizability constraint
        3. Yap correction
        4. Realisability and Schwarz' inequality
  2. Nonlinear eddy viscosity models
    1. Explicit nonlinear constitutive relation
      1. Cubic k-epsilon
      2. EARSM
    2. v2-f models
      1. \overline{\upsilon^2}-f model
      2. \zeta-f model
  3. Reynolds stress model (RSM)
Large eddy simulation (LES)
  1. Smagorinsky-Lilly model
  2. Dynamic subgrid-scale model
  3. RNG-LES model
  4. Wall-adapting local eddy-viscosity (WALE) model
  5. Kinetic energy subgrid-scale model
  6. Near-wall treatment for LES models
Detached eddy simulation (DES)
Direct numerical simulation (DNS)
Turbulence near-wall modeling
Turbulence free-stream boundary conditions
  1. Turbulence intensity
  2. Turbulence length scale

These are turbulence models in which the Reynolds stresses, as obtained from a Reynolds averaging of the Navier-Stokes equations, are modelled by a linear constitutive relationship with the mean flow straining field, as:

 
- \rho \left\langle  u_{i} u_{j} \right\rangle = 2 \mu_{t} S_{ij} - \frac{2}{3} \rho k \delta_{ij}

where

  • \mu_{t} is the coefficient termed turbulence "viscosity" (also called the eddy viscosity)
  • k = \frac{1}{2} \left( \left\langle  u_{1} u_{1} \right\rangle + \left\langle  u_{2} u_{2} \right\rangle + \left\langle  u_{3} u_{3} \right\rangle \right) is the mean turbulent kinetic energy
  • S_{ij}= \frac{1}{2} \left[ \frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right] - \frac{1}{3} \frac{\partial U_{k}}{\partial x_{k}} \delta_{ij}
is the mean strain rate


Note that that inclusion of \frac{2}{3} \rho k \delta_{ij} in the linear constitutive relation is required by tensorial algebra purposes when solving for two-equation turbulence models (or any other turbulence model that solves a transport equation for k.


This linear relationship is also known as the Boussinesq hypothesis. For a deep discussion on this linear constitutive relationship, check section Introduction to turbulence/Reynolds averaged equations.

There are several subcategories for the linear eddy-viscosity models, depending on the number of (transport) equations solved for to compute the eddy viscosity coefficient.

  1. Algebraic models
  2. One equation models
  3. Two equation models
My wiki