CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Kato-Launder modification

Kato-Launder modification

From CFD-Wiki

Revision as of 15:54, 8 December 2005 by Jola (Talk | contribs)
Jump to: navigation, search

The Kato-Launder modification is an ad-hoc modification of the turbulent production term in the k equation. The main purpose of the modification is to reduce the tendency that two-equation models have to over-predict the turbulent production in regions with large normal strain, i.e. regions with strong acceleration or decelleration.

Contents

Basic equations

The transport equation for the turbulent energy, k, used in most two-equation models can be written as:


\frac{\partial}{\partial t} \left( \rho k \right) +
\frac{\partial}{\partial x_j} 
\left[
 \rho k u_j - \left( \mu + \frac{\mu_t}{\sigma_k} \right) 
 \frac{\partial k}{\partial x_j}
\right]
=
P - \rho \epsilon - \rho D

Where P is the turbulent production normally given by:


P = \tau_{ij}^{turb} \frac{\partial u_i}{\partial x_j}

\tau_{ij}^{turb} is the turbulent shear stress tensor given by the Boussinesq assumption:


\tau_{ij}^{turb} \equiv 
- \overline{\rho u''_i u''_j} \approx
2 \mu_t S_{ij}^* - \frac{2}{3} \rho k \delta_{ij}

Where \mu_t is the eddy-viscosity given by the turbluence model and S_{ij}^* is the trace-less viscous strain-rate defined by:


S_{ij}^* \equiv
 \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
                \frac{\partial u_j}{\partial x_i} \right) -
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}

In incompressible flows, where \frac{\partial u_i}{\partial x_i} = 0, the production term P can be rewritten as:


\begin{matrix}
P & = & \tau_{ij}^{turb} \frac{\partial u_i}{\partial x_j} \\
\ & = & \left[ 2 \mu_t S_{ij}^* - \frac{2}{3} \rho k \delta_{ij} \right] \frac{\partial u_i}{\partial x_j} \\
\ & = & \left[ 2 \mu_t \left( \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
 \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) 
 - \frac{2}{3} \rho k \delta_{ij}
 \right] \frac{\partial u_i}{\partial x_j} \\
\ & \approx & \mu_t \left(\frac{\partial u_i}{\partial x_j} +
 \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}  \\
\ & = & \mu_t \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) 
              \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \\
\end{matrix}

Hence


P = \mu_t S S

Where


S \equiv \sqrt{\frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)^2 }

Production term modification

The proposal by Kato and Launder is to replace one of the strain-rates, S, in the turbulent production term with the vorticity, \Omega. The Kato-Launder modified production then becomes:


P = \mu_t S \Omega

Where


S \equiv \sqrt{\frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)^2 }

and


\Omega \equiv \sqrt{\frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)^2 }

Discussion

In pure shear-flows like boundary-layers and wakes the Kato-Launder modified production term will give exactly the same result as the unmodified production term. However, outside of boundary-layers and wakes the Kato-Launder modified production term will give very different results. Essentially what it does is to turn off the turbulent production outside of the boundary-layers and wakes. This has the good effect that

References

Kato, M. and Launder, B. E. (1993), "The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders", Proc. 9th Symposium on Turbulent Shear Flows, Kyoto, August 1993, pp. 10.4.1-10.4.6.

My wiki