CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Navier-Stokes equations

Navier-Stokes equations

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Other formulation)
m (Reference correction)
 
(12 intermediate revisions not shown)
Line 139: Line 139:
===Derivation of momentum equations===
===Derivation of momentum equations===
 +
 +
All is started from Newton's law:
 +
 +
FORCE is equal MASS time ACCELERATION
 +
 +
<table width="70%"><tr><td>
 +
:<math>
 +
F=ma
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 +
and which is applied to the fluid parsel
[[Image:Motion.JPG]]
[[Image:Motion.JPG]]
Line 513: Line 525:
==== Other formulation ====
==== Other formulation ====
 +
 +
Cauchy's equation of motion
 +
 +
<table width="70%"><tr><td>
 +
:<math>
 +
\rho \frac{Du_{i}}{Dt} = \rho g_{i} + \frac{\partial \tau_{ij}}{ \partial x_{j}}
 +
</math>
 +
</td><td width="5%">(14)</td></tr></table>
 +
 +
The equation of motion for a Newtonian fluid is obtained by constitutive equation into Cauchy's equation to obtain
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 566: Line 588:
===Derivation of the energy equation===
===Derivation of the energy equation===
-
we follow Wesseling
+
we follow Wesseling (2001)
 +
 
 +
By applying the first law of thermodynamics to a material volume <math>V(t)</math> we find
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 573: Line 597:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
with <math>E</math> the ''total energy'' per unit mass
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 580: Line 606:
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
Furthermore, <math>W</math> is the rate of work expended by the surroundings on the fluid in <math>V(t)</math>, and <math>Q</math> is the rate of heat addition
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 592: Line 619:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
Assuming that heat is added to each material particle at a rate <math>q</math> per unit of mass, and that there is a heat flux per unit of area through <math>S(t)</math> we find
 +
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 598: Line 628:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
Let heat diffusion be governed by Fourier's law:
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 604: Line 636:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
with <math>k</math> the thermal conductivity, and <math>T</math> the tempereture, which is another state variable. Using the divergence theorem we find
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 610: Line 644:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
By application of the transport theorem and substitution we obtain
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 616: Line 652:
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
 +
 +
Since this holds for every <math>V(t)</math> , we have
<table width="70%"><tr><td>
<table width="70%"><tr><td>
Line 635: Line 673:
==References==
==References==
{{reference-paper  | author=C. L. M. H. Navier | year=1822 | title=Memoire sur les lois du mouvement des fluides | rest=Mem. Acad. Sci. Inst. France, 6, 389-440}}
{{reference-paper  | author=C. L. M. H. Navier | year=1822 | title=Memoire sur les lois du mouvement des fluides | rest=Mem. Acad. Sci. Inst. France, 6, 389-440}}
 +
 +
{{reference-paper  | author=Loiciansky, L.G. | year=1978 | title=Mechanics of Fluid and Gas | rest=5 edn., Nauka, Moscow }}
 +
 +
{{reference-paper  | author=Pieter Wesseling | year=2001 | title=Principles of computational fluid dynamics | rest=Springer-Verlag Berlin Heidelberg }}
 +
 +
{{reference-paper  | author=Schlichting, H., Gersten, K. | year=2006 | title=Grenzschicht Theorie | rest=10th edn. Springer-Verlag Berlin Heidelberg. (german)}}
 +
 +
{{reference-paper  | author=Schlichting, H., Gersten, K. | year=2000 | title=Boundary Layer Theory | rest=8th edn. Springer-Verlag Berlin Heidelberg }}
 +
 +
{{reference-paper  | author=Герман Шлихтинг | year=1974 | title=Теория пограничного слоя | rest=translation from 5th German edition corrected by 6th american edition edited by L.G. Loiciansky,  Nauka, Moscow}}
==External links==
==External links==
*[http://scienceworld.wolfram.com/physics/Navier-StokesEquations.html Navier-Stokes equations at mathworld.com]
*[http://scienceworld.wolfram.com/physics/Navier-StokesEquations.html Navier-Stokes equations at mathworld.com]
*[http://www.claymath.org/millennium/Navier-Stokes_Equations/ Millenium Problem]
*[http://www.claymath.org/millennium/Navier-Stokes_Equations/ Millenium Problem]

Latest revision as of 18:17, 28 August 2012

The Navier-Stokes equations are the basic governing equations for a viscous, heat conducting fluid. It is a vector equation obtained by applying Newton's Law of Motion to a fluid element and is also called the momentum equation. It is supplemented by the mass conservation equation, also called continuity equation and the energy equation. Usually, the term Navier-Stokes equations is used to refer to all of these equations.

Contents

Equations

The instantaneous continuity equation (1), momentum equation (2) and energy equation (3) for a compressible fluid can be written as:


\frac{\partial \rho}{\partial t} +
\frac{\partial}{\partial x_j}\left[ \rho u_j \right] = 0
(1)

\frac{\partial}{\partial t}\left( \rho u_i \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_i u_j + p \delta_{ij} - \tau_{ji} \right] = 0, \quad i=1,2,3
(2)

\frac{\partial}{\partial t}\left( \rho e_0 \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_j e_0 + u_j p + q_j - u_i \tau_{ij} \right] = 0
(3)

For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the viscous stress is given by:


\tau_{ij} = 2 \mu S_{ij}^*
(4)

Where the trace-less viscous strain-rate is defined by:


S_{ij}^* \equiv
 \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
                \frac{\partial u_j}{\partial x_i} \right) -
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}
(5)

The heat-flux, q_j, is given by Fourier's law:


q_j = -\lambda \frac{\partial T}{\partial x_j}
    \equiv -C_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}
(6)

Where the laminar Prandtl number Pr is defined by:


Pr \equiv \frac{C_p \mu}{\lambda}
(7)

To close these equations it is also necessary to specify an equation of state. Assuming a calorically perfect gas the following relations are valid:


\gamma \equiv \frac{C_p}{C_v} ~~,~~
p = \rho R T ~~,~~
e = C_v T ~~,~~
C_p - C_v = R
(8)

Where \gamma, C_p, C_v and R are constant.

The total energy e_0 is defined by:


e_0 \equiv e + \frac{u_k u_k}{2}
(9)

Note that the corresponding expression (15) for Favre averaged turbulent flows contains an extra term related to the turbulent energy.

Equations (1)-(9), supplemented with gas data for \gamma, Pr, \mu and perhaps R, form a closed set of partial differential equations, and need only be complemented with boundary conditions.

Boundary conditions

Derivation

Derivation of continuity equation

A fundamental laws of Newtonian mechanics states the conservation of mass in an arbitrary material control volume varying in time V_{m}. Material control volume.png

A material volume contains the same portions of a fluid at all times. It may be defined by a closed bounding surface S_{m} eneveloping a portion of a fluid at certain time. Fluid elements cannot enter or leave this control volume. The movement of every point on the surface S_{m} is defined by the local velocity \boldsymbol{u}. So one can define:


0= \frac {dM}{dt}= \frac {d}{dt} \int_{V_{m}} \rho  \, dV.

Applying the Reynolds transport theorem and divergence theorem one obtains:


0= \frac {dM}{dt}= \int_{V_{m}} \frac {\partial \rho}{\partial t} dV + \int_{S_m} \rho \boldsymbol{u}\cdot\boldsymbol{n} \, dS = \int_{V_{m}} \left( \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \left( \rho \boldsymbol{u} \right) \right) dV

Since this relation is valid for an arbitrary volume V_{m}, the integrand must be zero. Note that now it can easily be assumed that the volume is a fixed control volume (where fluid particles can freely enter and leave the volume) by taking account of mass fluxes through the surface S_{m}.

Thus


\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \left( \rho \boldsymbol{u} \right)
(1)

at all points of the fluid. For an incompressible fluid the change rate of density is zero. One can simplify (1) to:


\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0.

Derivation of momentum equations

All is started from Newton's law:

FORCE is equal MASS time ACCELERATION

 
F=ma
(2)

and which is applied to the fluid parsel

Motion.JPG

Expansion, rotation and deformation of a fluid parsel

forces and stresses

 
\textbf{V} = \textbf{i}u + \textbf{j}v + \textbf{k}w
(2)


 
\rho \frac{D \textbf{V}}{Dt} = \rho \textbf{F} + \textbf{P}
(3)

where

\textbf{F} - mass force per volume unit

\textbf{P} - surface force per volume unit


 
\textbf{F} = \textbf{i}F_{x} + \textbf{j}F_{y} + \textbf{k}F_{z}
(4)


There are two types of forces: body(mass) forces and surface forces. Body forces act on the entire control volume. The most common body force is that due to gravity. Electromagnetic phenomena may also create body forces, but this is a rather specialized situation.


Surface forces act on only surface of a control volume at a time and arise due to pressure or viscous stresses.




We find a general expression for the surface force per unit volume of a deformable body. Consider a rectangular parallelepiped with sides dx,dy,dz and hence with volume dV = dxdydz


Stresses.JPG

At the moment we assume this parallelepiped isolated from the rest of the fluid flow , and consider the forces acting on the faces of the parallelepiped.

Let the left forward top of a parallelepiped lies in a point O

To both faces of the parallelepiped perpendicular to the axis x and having the area dydz applied resulting stresses , equal to \textbf{p}_{x} and \textbf{p}_{x}+\frac{\partial \textbf{p}_{x}}{ \partial x} respectively


So we have

for x - direction  \frac{ \partial \textbf{p}_{x}}{ \partial x} dxdydz

for y - direction  \frac{ \partial \textbf{p}_{y}}{ \partial y} dxdydz

for z - direction  \frac{ \partial \textbf{p}_{z}}{ \partial z} dxdydz

 
\textbf{P} = \frac{\partial \textbf{p}_{x}}{ \partial x} + \frac{\partial \textbf{p}_{y}}{ \partial y}	+ \frac{\partial \textbf{p}_{z}}{ \partial z}
(6)
 
\rho \frac{d \textbf{V}}{dt} = \rho \textbf{F} + \frac{\partial \textbf{p}_{x} }{ \partial x} + \frac{\partial \textbf{p}_{y} }{ \partial y} + \frac{\partial \textbf{p}_{z} }{ \partial z}
(7)
 
\left.
\begin{array}{c} 
\rho \frac{du}{dt}= \rho F_{x} + \frac{ \partial p_{xx}}{\partial x} + \frac{ \partial p_{yx}}{\partial y} + \frac{ \partial p_{zx}}{\partial z} \\
\rho \frac{dv}{dt}= \rho F_{y} + \frac{ \partial p_{xy}}{\partial x} + \frac{ \partial p_{yy}}{\partial y} + \frac{ \partial p_{zy}}{\partial z} \\
\rho \frac{dw}{dt}= \rho F_{z} + \frac{ \partial p_{xz}}{\partial x} + \frac{ \partial p_{yz}}{\partial y} + \frac{ \partial p_{zz}}{\partial z} \\
\end{array}
\right\}
(8)
 
\left.
\begin{array}{c} 
\rho \left( \frac{\partial u}{ \partial t} + u \frac{ \partial u}{ \partial x} + v \frac{ \partial u}{ \partial y} + w \frac{ \partial u}{ \partial z} \right) = \rho F_{x} + \frac{ \partial p_{xx}}{\partial x} + \frac{ \partial p_{yx}}{\partial y} + \frac{ \partial p_{zx}}{\partial z} \\
\rho \left( \frac{\partial u}{ \partial t} + u \frac{ \partial u}{ \partial x} + v \frac{ \partial u}{ \partial y} + w \frac{ \partial u}{ \partial z} \right) = \rho F_{y} + \frac{ \partial p_{xx}}{\partial x} + \frac{ \partial p_{yx}}{\partial y} + \frac{ \partial p_{zx}}{\partial z} \\
\rho \left( \frac{\partial u}{ \partial t} + u \frac{ \partial u}{ \partial x} + v \frac{ \partial u}{ \partial y} + w \frac{ \partial u}{ \partial z} \right) = \rho F_{z} + \frac{ \partial p_{xx}}{\partial x} + \frac{ \partial p_{yx}}{\partial y} + \frac{ \partial p_{zx}}{\partial z} \\  
\end{array}
\right\}
(9)

The force due to the stress is the product of the stress and the area over which it acts.

 
\textbf{P}_{x} = \textbf{i} \sigma_{xx} + \textbf{j} \tau_{xy} + \textbf{k} \tau_{xz}
(10)
 
\textbf{P}_{y} = \textbf{i} \tau_{yx} + \textbf{j} \sigma_{yy} + \textbf{k} \tau_{yz}
(11)
 
\textbf{P}_{z}=\textbf{i}\tau_{zx} + \textbf{j} \tau_{zy} + \textbf{k}*\sigma_{zz}
(12)


 
\Pi = \left(
\begin{array}{ccc} 
 \sigma_{xx} & \tau_{xy}  & \tau_{xz} \\
 \tau_{yx}  & \sigma_{yy} & \tau_{yz} \\
 \tau_{zx}  & \tau_{zy}  & \sigma_{zz} \\
\end{array}
\right)
(13)


 
\left.
\begin{array}{c} 
\rho \frac{du}{dt} = \rho F_{x} - \frac{\partial p}{\partial x} + \left( \frac{\partial \sigma_{x} '}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z}  \right) \\
\rho \frac{dv}{dt} = \rho F_{y} - \frac{\partial p}{\partial y} + \left( \frac{\partial \tau_{xy} }{\partial x} + \frac{\partial \sigma_{y} '}{\partial y} + \frac{\partial \tau_{yz}}{\partial z}  \right) \\
\rho \frac{dw}{dt} = \rho F_{z} - \frac{\partial p}{\partial z} + \left( \frac{\partial \tau_{xz} '}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}'}{\partial z}  \right) 
\end{array}
\right\}
(14)

deformation and rotation

Motion all.JPG

 
\left.
\begin{array}{c} 
u = u_{0} + \left( \frac{\partial u}{\partial x} \right)_{0} \left( x - x_{0} \right) + \left( \frac{\partial u}{\partial y} \right)_{0} \left( y - y_{0} \right) + \left( \frac{\partial u}{\partial z} \right)_{0} \left( z - z_{0} \right) \\

v = v_{0} + \left( \frac{\partial v}{\partial x} \right)_{0} \left( x - x_{0} \right) + \left( \frac{\partial v}{\partial y} \right)_{0} \left( y - y_{0} \right) + \left( \frac{\partial v}{\partial z} \right)_{0} \left( z - z_{0} \right) \\

w = w_{0} + \left( \frac{\partial w}{\partial x} \right)_{0} \left( x - x_{0} \right) + \left( \frac{\partial w}{\partial y} \right)_{0} \left( y - y_{0} \right) + \left( \frac{\partial w}{\partial z} \right)_{0} \left( z - z_{0} \right) \\
\end{array}
\right\}
(15)
 
\left.
\begin{array}{c} 
u= u_{0} + \omega_{y} \left( z - z_{0} \right) - \omega_{z} \left( y - y_{0} \right) \\
v= v_{0} + \omega_{z} \left( x - x_{0} \right) - \omega_{x} \left( z - z_{0} \right) \\
w= w_{0} + \omega_{x} \left( y - y_{0} \right) - \omega_{y} \left( x - x_{0} \right) \\
\end{array}
\right\}
(16)
 
\left.
\begin{array}{c} 
\omega_{x} = \frac{1}{2} \left( \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \\
\omega_{y} = \frac{1}{2} \left( \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \\
\omega_{z} = \frac{1}{2} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \\
\end{array}
\right\}
(18)
 
 \left.
\begin{array}{c} 
u_{solid} = u_{0} 
+ \frac{1}{2} \left( \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)_{0} \left( z - z_{0} \right) 
- \frac{1}{2} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)_{0} \left( y - y_{0} \right) \\

v_{solid} = v_{0} 
+ \frac{1}{2} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)_{0} \left( x - x_{0} \right) 
- \frac{1}{2} \left( \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)_{0} \left( z - z_{0} \right) \\

w_{solid} = w_{0} 
+ \frac{1}{2} \left( \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)_{0} \left( y - y_{0} \right) 
- \frac{1}{2} \left( \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)_{0} \left( x - x_{0} \right) \\

\end{array}
\right\}
(19)
 
 \left.
\begin{array}{c} 
u = u_{solid} + u_{def} \\
v = v_{solid} + v_{def} \\
w = w_{solid} + w_{def} \\
\end{array}
\right\}
(20)
 
 \left.
\begin{array}{c} 
u_{def} = \left( \frac{ \partial u}{ \partial x} \right)_{0} \left( x - x_{0} \right) + \frac{1}{2} \left( \frac{ \partial v}{ \partial x} + \frac{ \partial u}{ \partial y} \right)_{0} \left( y - y_{0} \right) + \frac{1}{2} \left( \frac{ \partial u}{ \partial z} + \frac{ \partial w}{ \partial x} \right)_{0} \left( z - z_{0} \right)\\

v_{def} = \frac{1}{2} \left( \frac{ \partial v}{ \partial x} + \frac{ \partial u}{ \partial y} \right)_{0} \left( x - x_{0} \right) 
+ \left( \frac{ \partial v}{ \partial y} \right)_{0} \left( y - y_{0} \right) 
+ \frac{1}{2} \left( \frac{ \partial u}{ \partial z} + \frac{ \partial w}{ \partial x} \right)_{0} \left( z - z_{0} \right)\\

w_{def} = \frac{1}{2} \left( \frac{ \partial u}{ \partial z} + \frac{ \partial w}{ \partial x} \right)_{0} \left( x - x_{0} \right) 
+ \frac{1}{2} \left( \frac{ \partial w}{ \partial y} + \frac{ \partial v}{ \partial z} \right)_{0} \left( y - y_{0} \right)
+ \left( \frac{ \partial w}{ \partial z} \right)_{0} \left( z - z_{0} \right)\\

\end{array}
\right\}
(21)


 
\dot{\epsilon}_{ij} \equiv 
\left(
\begin{array}{ccc}
\dot{\epsilon}_{x}  & \dot{\epsilon}_{xy} & \dot{\epsilon}_{xz} \\ 
\dot{\epsilon}_{yx} & \dot{\epsilon}_{y}  & \dot{\epsilon}_{yz} \\
\dot{\epsilon}_{zx} & \dot{\epsilon}_{zy} & \dot{\epsilon}_{z}  \\
\end{array}
\right)	\equiv
(11)
 
\equiv \left(
\begin{array}{ccc} \frac{\partial u}{ \partial x} & \frac{1}{2} \left( \frac{\partial v}{ \partial x} + \frac{\partial u}{ \partial y} \right) & \frac{1}{2} \left( \frac{\partial w}{ \partial x} + \frac{\partial u}{ \partial z} \right) \\	 
\frac{1}{2} \left( \frac{\partial u}{ \partial y} + \frac{\partial v}{ \partial x} \right) & \frac{\partial u}{ \partial x} & \frac{1}{2} \left( \frac{\partial v}{ \partial x} + \frac{\partial u}{ \partial y} \right) \\
\frac{1}{2} \left( \frac{\partial u}{ \partial y} + \frac{\partial v}{ \partial x} \right) & \frac{1}{2} \left( \frac{\partial u}{ \partial y} + \frac{\partial v}{ \partial x} \right) &
\frac{\partial u}{ \partial x} 
\end{array}
\right)
(22)

Pic 3 3 Shlihting.JPG

Pic 3 4 Shlihting.JPG

Pic 3 5 Shlihting.JPG

Pic 3 6 Shlihting.JPG

Newtonian Fluids

Newton came up with the idea of requiring the stress \tau to be linearly proportional to the time rate at which at which strain occurs. Specifically he studied the following problem. There are two flat plates separated by a distance h. The top plate is moved at a velocity V, while the bottom plate is held fixed.

Stress 00.JPG

Newton postulated (since then experimentally verified) that the shear force or shear stress needed to deform the fluid was linearly proportional to the velocity gradient:

 
\tau \propto \frac{V}{h}
(2)

The proportionality factor turned out to be a constant at moderate temperatures, and was called the coefficient of viscosity, \mu. Furthermore, for this particular case, the velocity profile is linear, giving v / h= \partial u / \partial y.

Therefore, Newton postulated:


 
\tau = \mu \frac{\partial u}{\partial y}
(2)

Fluids that have a linear relationship between stress and strain rate are called Newtonian fluids. This is a property of the fluid, not the flow. Water and air are examples of Newtonian fluids, while blood is a non-Newtonian fluid.

Stokes Hypothesis

Stokes extended Newton's idea from simple 1-D flows (where only one component of velocity is present) to multidimensional flows. He developed the following relations, collectively known as Stokes relations

 
\sigma_{x}  = 2 \mu \frac{ \partial u}{ \partial x} + \lambda \left( \frac{ \partial u}{ \partial x} + \frac{ \partial v}{ \partial y} + \frac{ \partial w}{ \partial z}  \right)
(12)
 
\sigma_{y}  = 2 \mu \frac{ \partial v}{ \partial y} + \lambda \left( \frac{ \partial u}{ \partial x} + \frac{ \partial v}{ \partial y} + \frac{ \partial w}{ \partial z}  \right)
(12)
 
\sigma_{z}  = 2 \mu \frac{ \partial w}{{\partial}z} + \lambda \left( \frac{ \partial u}{ \partial x} + \frac{ \partial v}{ \partial y} + \frac{ \partial w}{ \partial z}  \right)
(12)


 
\tau_{xy} = \tau_{yx} = \mu \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
(12)
 
\tau_{xz} = \tau_{zx} = \mu \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)
(12)
 
\tau_{zy} = \tau_{yz} = \mu \left( \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)
(12)

The quantity \mu is called molecular viscosity, and is a function of temperature.

The coefficient \lambda was chosen by Stokes so that the sum of the normal stresses \sigma_{x},\sigma_{y} and \sigma_{z} are zero.

Then

 
\lambda = - \frac{2}{3}\mu
(12)

substitution

 
\left.
\begin{array}{c} 
\rho \frac{du}{dt} = \rho F_{x}- \frac{\partial p}{ \partial x} + 2 \frac{\partial}{ \partial x} \left( \mu \frac{ \partial u }{ \partial x } \right) + \frac{\partial }{ \partial y} \left[  \mu \left( \frac{\partial u}{ \partial y} + \frac{\partial v}{ \partial x} \right)\right] + \frac{\partial }{ \partial z} \left[  \mu \left( \frac{\partial u}{ \partial z} + \frac{\partial w}{ \partial x} \right)\right] - \frac{2}{3} \frac{\partial}{\partial x}\left( \mu div \textbf{V}\right)\\
\rho \frac{dv}{dt} = \rho F_{y} - \frac{\partial p}{ \partial y} + \frac{\partial }{ \partial x} \left[  \mu \left( \frac{\partial u}{ \partial y} + \frac{\partial v}{ \partial x} \right)\right] + 2 \frac{\partial}{ \partial y} \left( \mu \frac{ \partial v }{ \partial y } \right) + \frac{\partial }{ \partial z} \left[  \mu \left( \frac{\partial v}{ \partial z} + \frac{\partial w}{ \partial y} \right)\right] - \frac{2}{3} \frac{\partial }{ \partial y} \left( \mu div \textbf{V} \right)  \\
\rho \frac{dw}{dt} = \rho F_{z} - \frac{\partial p}{ \partial z}+ \frac{\partial }{ \partial x} \left[  \mu \left( \frac{\partial u}{ \partial z} + \frac{\partial w}{ \partial x} \right)\right] + \frac{\partial }{ \partial y} \left[  \mu \left( \frac{\partial v}{ \partial z} + \frac{\partial w}{ \partial y} \right)\right] + 2 \frac{\partial}{ \partial z} \left( \mu \frac{ \partial w }{ \partial z } \right) - \frac{2}{3} \frac{\partial }{ \partial z} ( \mu div \textbf{V} ) \\
\end{array}
\right\}
(12)

Other formulation

Cauchy's equation of motion

 
\rho \frac{Du_{i}}{Dt} = \rho g_{i} + \frac{\partial \tau_{ij}}{ \partial x_{j}}
(14)

The equation of motion for a Newtonian fluid is obtained by constitutive equation into Cauchy's equation to obtain

 
\rho \frac{Du_{i}}{Dt} = - \frac{\partial p}{ \partial x_{i}} + \rho g_{i} + \frac{\partial }{ \partial x_{j}} \left[ 2 \mu e_{ij} - \frac{2}{3} \mu \left( \nabla \cdot \textbf{u} \right) \delta_{ij} \right]
(14)


where e_{ij} is the strain rate tensor

 
e_{ij} \equiv \frac{1}{2} \left( \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)
(15)

If the temperature differences are small within the fluid, then \mu can be taken outside the derivative, which then reduces to

 
\begin{array}{ccccc}
\rho \frac{Du_{i}}{Dt} & = & - \frac{\partial p}{ \partial x_{i}} + \rho g_{i} & + & 2 \mu  \frac{\partial e_{ij}}{ \partial x_{j}} - \frac{ 2 \mu}{3} \frac{ \partial }{ \partial x_{i}} \left( \nabla \cdot \textbf{u} \right) \\
& = & - \frac{\partial p}{ \partial x_{i}} + \rho g_{i} & + & \mu \left[ \nabla^{2} u_{i} + \frac{1}{3} \frac{ \partial }{ \partial x_{i}} \left( \nabla \cdot \textbf{u} \right) \right]\\
\end{array}
(16)

where

 
\nabla^{2} u_{i} \equiv \frac{\partial^{2} u_{i}}{ \partial x_{j} \partial x_{j}}  = \frac{\partial^{2} u_{i}}{ \partial x^{2}_{1}} + \frac{\partial^{2} u_{i}}{ \partial x^{2}_{2}} + \frac{\partial^{2} u_{i}}{ \partial x^{2}_{3}}
(16)

is the Laplasian of u_{i}. For incompressible fluids \nabla \cdot \textbf{u} = 0, and using vector notation, the incompressible Navier-Stokes equation reduces to

 
\rho \frac{Du_{i}}{Dt} = - \nabla p + \rho \textbf{g} + \mu \nabla^{2} \textbf{u}
(16)

If the viscous effects are negligible, we obtain the Euler equation

 
\rho \frac{Du_{i}}{Dt} = - \nabla p + \rho \textbf{g}
(16)

Derivation of the energy equation

we follow Wesseling (2001)

By applying the first law of thermodynamics to a material volume V(t) we find

 
\frac{d}{dt}  \int\limits_{V\left( t \right)} \rho E dV = W + Q
(2)

with E the total energy per unit mass

 
E = e + \frac{1}{2} u_{\alpha}u_{\alpha}
(2)

Furthermore, W is the rate of work expended by the surroundings on the fluid in V(t), and Q is the rate of heat addition

 
W = \underbrace{\int\limits_{V\left( t \right)} u_{\alpha} f^{b}_{\alpha} \rho dV }_{body force}+ \underbrace{\int\limits_{S\left( t \right)} u_{\alpha} f^{s}_{\alpha} dS}_{surface force}
(2)
 
W = \int\limits_{V\left( t \right)} \left\{ \rho u_{\alpha} f^{b}_{\alpha} + \left( u_{\alpha} \tau_{\alpha \beta} \right)_{, \beta} \right\} dV
(2)

Assuming that heat is added to each material particle at a rate q per unit of mass, and that there is a heat flux per unit of area through S(t) we find


 
Q = \int\limits_{V\left( t \right)} \rho q dV + \int\limits_{S\left( t \right)} \sigma dS
(2)

Let heat diffusion be governed by Fourier's law:

 
\sigma = k \textbf{n} \cdot \textbf{{grad}} T
(2)

with k the thermal conductivity, and T the tempereture, which is another state variable. Using the divergence theorem we find

 
Q = \int\limits_{V\left( t \right)} \left\{ \rho q + \left( k T_{, \alpha}  \right)_{, \alpha} \right\} dV
(2)

By application of the transport theorem and substitution we obtain

 
\int\limits_{V\left( t \right)} \left\{ \frac{\partial \rho E}{\partial t} + \left( \rho u_{\alpha} E \right)_{, \alpha } \right\} dV = \int\limits_{V\left( t \right)} \left\{ \left( u_{\alpha} \tau_{\alpha \beta} \right)_{, \beta} + \left( k T_{, \alpha}  \right)_{, \alpha} + \rho u_{\alpha} f^{b}_{\alpha}  + \rho q \right\} dV
(2)

Since this holds for every V(t) , we have

 
\frac{\partial \rho E}{\partial t} + \left( \rho u_{\alpha} E \right)_{, \alpha } = \left( u_{\alpha} \tau_{\alpha \beta} \right)_{, \beta} + \left( k T_{, \alpha}  \right)_{, \alpha} + \rho u_{\alpha} f^{b}_{\alpha}  + \rho q
(2)

Existence and uniqueness

The existence and uniqueness of classical solutions of the 3-D Navier-Stokes equations is still an open mathematical problem and is one of the Clay Institute's Millenium Problems. In 2-D, existence and uniqueness of regular solutions for all time have been shown by Jean Leray in 1933. He also gave the theory for the existence of weak solutions in the 3-D case while uniqueness is still an open question.

However, recently, Prof. Penny Smith submitted a paper, Immortal Smooth Solution of the Three Space Dimensional Navier-Stokes System, which may provide a proof of the existence and uniqueness.(It has a serious flaw, so the author withdrew the paper)

History

Claude Louis Marie Henri Navier’s name is associated with the famous Navier-Stokes equations that govern motion of a viscous fluid. He derived the Navier-Stokes equations in a paper in 1822. His derivation was however based on a molecular theory of attraction and repulsion between neighbouring molecules. Euler had already derived the equations for an ideal fluid in 1755 which did not include the effects of viscosity. Navier did not recognize the physical significance of viscosity and attributed the viscosity coefficient to be a function of molecular spacing.

The equations of motion were rederived by Cauchy in 1828 and by Poisson in 1829. In 1843 Barre de Saint-Venant published a derivation of the equations that applied to both laminar and turbulent flows. However the other person whose name is attached with Navier is the Irish mathematician-physicist George Gabriel Stokes. In 1845 he published a derivation of the equations in a manner that is currently understood.

References

C. L. M. H. Navier (1822), "Memoire sur les lois du mouvement des fluides", Mem. Acad. Sci. Inst. France, 6, 389-440.

Loiciansky, L.G. (1978), "Mechanics of Fluid and Gas", 5 edn., Nauka, Moscow.

Pieter Wesseling (2001), "Principles of computational fluid dynamics", Springer-Verlag Berlin Heidelberg.

Schlichting, H., Gersten, K. (2006), "Grenzschicht Theorie", 10th edn. Springer-Verlag Berlin Heidelberg. (german).

Schlichting, H., Gersten, K. (2000), "Boundary Layer Theory", 8th edn. Springer-Verlag Berlin Heidelberg.

Герман Шлихтинг (1974), "Теория пограничного слоя", translation from 5th German edition corrected by 6th american edition edited by L.G. Loiciansky, Nauka, Moscow.

External links

My wiki