Introduction to turbulence/Free turbulent shear flows
From CFD-Wiki
(Difference between revisions)
(→Introduction) |
(→Introduction) |
||
Line 1: | Line 1: | ||
== Introduction == | == Introduction == | ||
- | Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in | + | Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in natural and engineering environments. The jet of of air issuing from one's nostrils or mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent free shear flows. |
Revision as of 16:40, 8 June 2008
Introduction
Free shear flows are inhomohomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulent free shear flows are commonly found in natural and engineering environments. The jet of of air issuing from one's nostrils or mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent free shear flows.