CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Rhie-Chow interpolation

Rhie-Chow interpolation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
we have at each cell descretised equation in this form, <br>
we have at each cell descretised equation in this form, <br>
:<math> a_p \vec v_P  = \sum\limits_{neighbours} {a_l } \vec v_l  - \frac{{\nabla p}}{V} </math> ;  <br>
:<math> a_p \vec v_P  = \sum\limits_{neighbours} {a_l } \vec v_l  - \frac{{\nabla p}}{V} </math> ;  <br>
-
we have <br>
 
-
:<math> \vec v_P  = \frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }} - \frac{{\nabla p}}{{a_p V}} </math> <br>
 
-
 
-
For continuity : <br>
 
-
:<math> \sum\limits_{faces} {\vec v_f  \bullet \vec A}  = 0 </math> <br>
 
-
so we get: <br>
 
-
:<math>\left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  - \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face}  = 0 </math> <br>
 
-
this gives us: <br>
 
-
:<math> \left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  = \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face} </math><br>
 
-
defining <math> H = \sum\limits_{neighbours} {a_l } \vec v_l </math> <br>
 
:<math> \left[ {\frac{1}{{a_p }}H} \right]_{face}  = \left[ {\frac{1}{{a_p }}\frac{{\nabla p}}{V}} \right]_{face} </math> <br>
:<math> \left[ {\frac{1}{{a_p }}H} \right]_{face}  = \left[ {\frac{1}{{a_p }}\frac{{\nabla p}}{V}} \right]_{face} </math> <br>
-
from this a pressure correction equation could be formed as: <br>
 
-
:<math> \left[ {\frac{1}{{a_p }}H} \right]_{face}  - \left[ {\frac{1}{{a_p }}\frac{{\nabla p^* }}{V}} \right]_{face}  = \left[ {\frac{1}{{a_p }}\frac{{\nabla p^' }}{V}} \right]_{face}  </math> <br>
 
-
This is a poisson equation.
 
-
Here the gradients could be used from previous iteration.
+
where <math> H = \sum\limits_{neighbours} {a_l } \vec v_l </math> <br>
 +
 
 +
 
 +
 
 +
----
 +
<i> Return to: <br>
 +
# [[Numerical methods | Numerical Methods]]
 +
# [[Solution of Navier-Stokes equation]]
 +
</i>

Revision as of 11:34, 23 October 2005

we have at each cell descretised equation in this form,

 a_p \vec v_P  = \sum\limits_{neighbours} {a_l } \vec v_l  - \frac{{\nabla p}}{V}  ;
 \left[ {\frac{1}{{a_p }}H} \right]_{face}  = \left[ {\frac{1}{{a_p }}\frac{{\nabla p}}{V}} \right]_{face}

where  H = \sum\limits_{neighbours} {a_l } \vec v_l



Return to:

  1. Numerical Methods
  2. Solution of Navier-Stokes equation

My wiki