CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Alternating tensor

Alternating tensor

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
 
(One intermediate revision not shown)
Line 1: Line 1:
 +
The alternating tensor, also known as '''Levi-Civita''' symbol is defined by
 +
:<math>
:<math>
\epsilon_{ijk} = \begin{cases}
\epsilon_{ijk} = \begin{cases}
Line 5: Line 7:
0, & \mbox{otherwise}
0, & \mbox{otherwise}
\end{cases}
\end{cases}
 +
</math>
 +
 +
Thus
 +
 +
:<math>
 +
\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1
 +
</math>
 +
 +
:<math>
 +
\epsilon_{321} = \epsilon_{132} = \epsilon_{213} = -1
 +
</math>
 +
 +
If any index is repeated then the value is zero, e.g.,
 +
 +
:<math>
 +
\epsilon_{112} = \epsilon_{121} = 0
 +
</math>
 +
 +
If any two indices are interchanged then the sign changes, e.g.,
 +
 +
:<math>
 +
\epsilon_{kji} = -\epsilon_{ijk}
 +
</math>
 +
 +
This tensor is useful in defining the cross product of two vectors. If <math> w := u \times v</math>, then
 +
 +
:<math>
 +
w_i = \epsilon_{ijk} u_j v_k
</math>
</math>

Latest revision as of 04:38, 20 September 2005

The alternating tensor, also known as Levi-Civita symbol is defined by


\epsilon_{ijk} = \begin{cases}
1, & \mbox{if i, j, k are all different and in cyclic order} \\
-1, & \mbox{if i, j, k are all different and in acyclic order} \\
0, & \mbox{otherwise}
\end{cases}

Thus


\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1

\epsilon_{321} = \epsilon_{132} = \epsilon_{213} = -1

If any index is repeated then the value is zero, e.g.,


\epsilon_{112} = \epsilon_{121} = 0

If any two indices are interchanged then the sign changes, e.g.,


\epsilon_{kji} = -\epsilon_{ijk}

This tensor is useful in defining the cross product of two vectors. If  w := u \times v, then


w_i = \epsilon_{ijk} u_j v_k
My wiki